

Impact of New Underwriting Data Sources and Tools

November 17, 2021

Presenters:

Murali Niverthi, FSA Munich RE

Philip Adams, FSA, CERA, MAAA Primerica

Overview

Predictive Analytics and Machine Learning

- Applying and understanding methods
- Implementing findings in underwriting and pricing processes

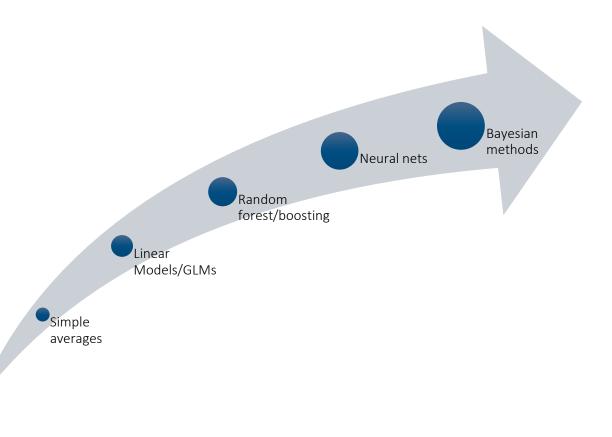
New Underwriting Tools

- Survey of tools and ramifications
- Summary of impacts to underwriting and pricing

Predictive Analytics

In Brief

- What It is
 - "A collection of statistical techniques that analyze current and historical facts to make predictions about future or otherwise unknown events" – Wikipedia
- What It Is Not
 - Cure-all for analysis
 - Data miracle worker
 - Existential threat



Machine Learning

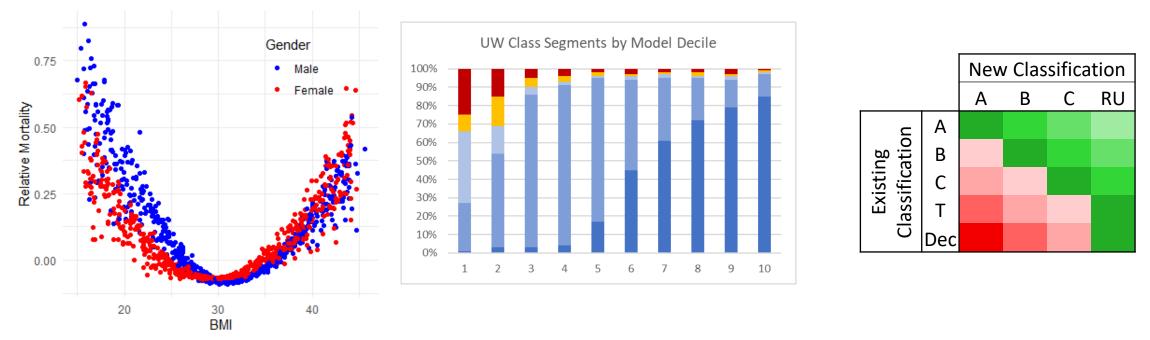
Use Case: Automated Document Scoring

1) APS or EHR contains useful but unstructured information

- Models can highlight where significant information is located
 - Axillary: 12, 28, 30
 - Prostate: 12, 56, 57
 - Svc: 33
 - Ancillary: 39, 40, 41, 43
 - Jaundice: 59
 - Excision: 59, 61, 62

Predictive Modeling

Use Case: Calibration and validation of new risk assessment tool



Build a model

Convert model patterns into decisions

Iterate and tune classifications

Underwriting Tools and Information Sources

Munich Re 2020 Accelerated Underwriting Survey Results*

Motor vehicle report (MVR) 100% Prescription (Rx) drug data 100% Insurance activity (MIB report) 100% Electronic application (E-app) 90% 10% Identity verification 80% 7% 3% 10% Rx-based scoring models 79% 17% 3% Credit-based scoring models 81% 11% 4% Teleinterview (Tele-app) 79% 18% 4% Criminal history 72% 7% 7% Other public records 59% 22% 11% Credit data 59% 19% 19% 4% Laboratory results data 36% 54% 4% 7% Medical claim records 36% 46% 18% Electronic health records (EHRs) 23% 67% 10% Combined Rx and credit-based scoring. 41% 19% 26% 15% Activity information from wearable devices 31% 58% 12% 0% 20% 40% 60% 80% 100% ■ Using now Evaluated, but decided against using Have not evaluated Evaluating

* Survey results represents responses from 30 carriers as of June 30, 2020

What tools and

information sources

evaluated for use, to

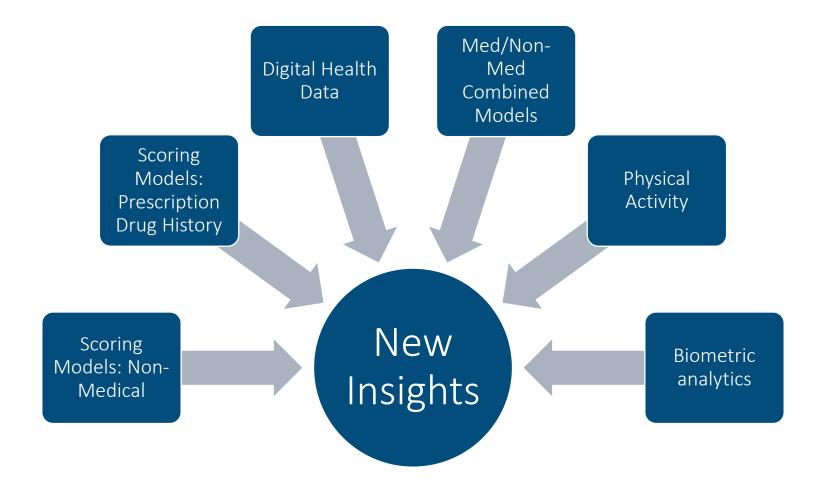
triage or classify risks

are used, or being

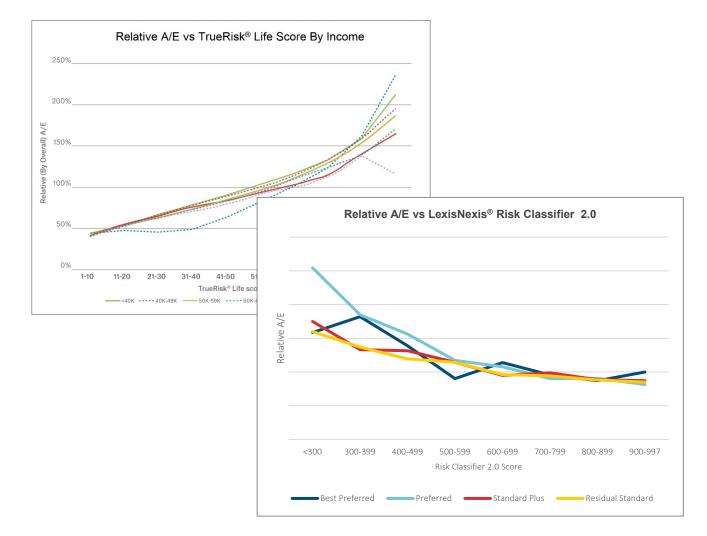
in the accelerated

pipeline?

Ever More Underwriting Tools

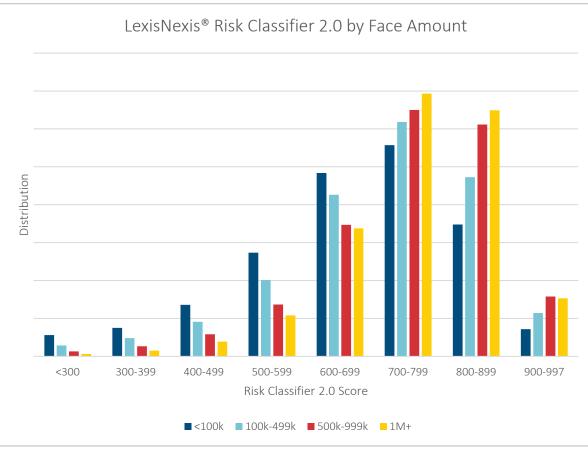


Scoring Models: Non-Medical



- Reflects behavioral predictors of risk based on attributes such as credit records, MVR and public records
- Little to no overlap with medical risk dimensions
- Improves identification and segmentation
- Useful for triage and classification with or without fluids

Scoring Models: Non-Medical



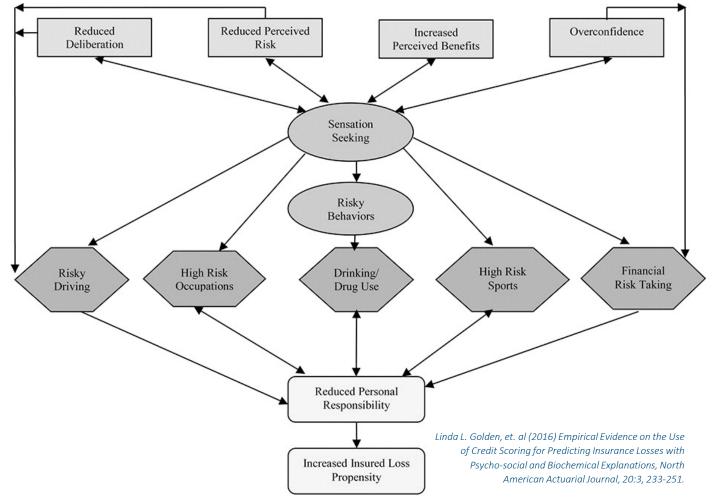
Source: internal reinsured population

- Acceleration triage: non-medical scores can be used as an upfront behavioral screen for accelerated pipeline
- Preferred segmentation: best preferred improves, cascading into other classes
- Overlaps with face amount effects

Face Amount Range	Mean Lexis Risk Classifier Score	Relative Mortality of Face Amount Range – 15VBT	Mortality of Risk Classifier >= 400 relative to FA Range
<100k	677	123%	94%
100k-499k	722	102%	97%
500k-999k	759	89%	98%
1M+	767	86%	99%

Scoring Models: Non-Medical

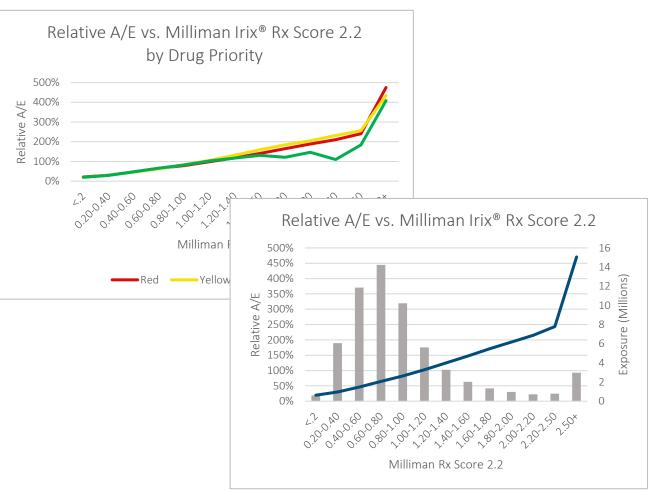
Why they work: Psychosocial Drivers



- Preference for increased sensation levels
- High sensation seekers show increased reduction in perceived risk and increased assurance in ability to avoid negative outcomes
- Deliberation and impulse control moderate sensation seeking behaviors ("think before you leap")

Scoring Models: Prescription Drug History

- Some major providers include Milliman and ExamOne
- Effectively stratifies risk
- Effective at identifying high risks when little other medical data is available
- Common uses
 - Thresholds
 - Risk class shifting
 - Ingredients in other models



Digital Health Data

Prescription Medication History

Rx's – Dates, Dosages, Number of Fills

Clinical Laboratory Test Results Complete Blood Count, Urine – Dates, Results

 Health Insurance Claims Data
Diagnostic Codes – Dates, Procedural Codes

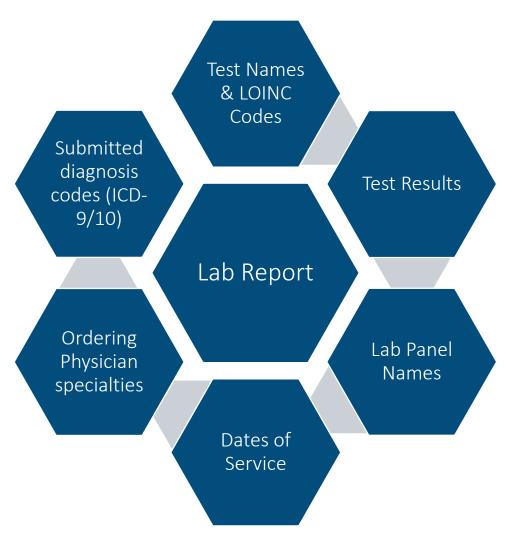
Electronic Health Records (EHRs)

EHR's – Dates, History, Symptoms, Dx, Treatment, Prognosis?

Leading Vendors for the Insurance Industry: Milliman, ExamOne, MIB, Human API, Clareto, Womba, Health Gorilla

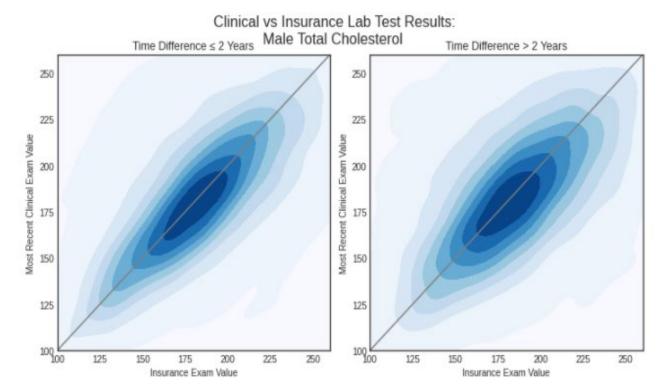
Digital Health Data: Clinical Lab Results

- Some major vendors include ExamOne and CRL
- Underlying data source is network of labs, for example Quest Diagnostics and LabCorp
- Effective at identifying high risks when little other medical data is available
- HIPAA compliant with applicant authorization and meets FCRA requirements.

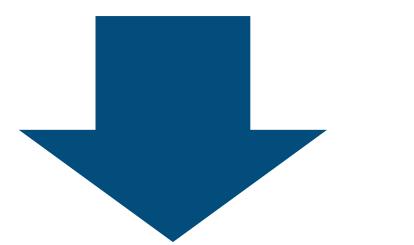


Clinical vs. Insurance Labs

- Alignment: clinical and insurance values largely track with the grey line of equality, where both values are the same.
 - Some differences are expected, possibly related to aging and change in health status over time or different laboratory protocols.
- **Recency**: Better consistency (narrower bands) when clinical labs are within 2 years prior to the insurance exam.



Digital Health Data: Medical Claims Data



What it Provides

- Diagnostic codes used in medical billing
- Allows decision refinements
- Contrast against application disclosures

Issues to Resolve

- Lack of context
- Coding precision
- Lack of history

Digital Health Data: EHRs

An EHR is a real-time patient health record with access to evidence-based decision support tools that can be used to aid clinicians in decision making.

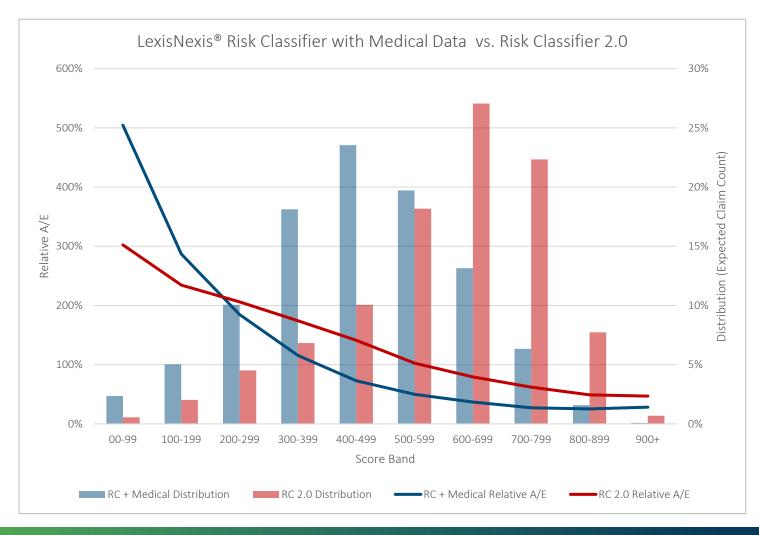
Challenges

- Hit rates are low but steadily increasingHundreds of vendors, many business
- models, and varying fees
- Legal Requirements for access to medical data must be solved for

Benefits

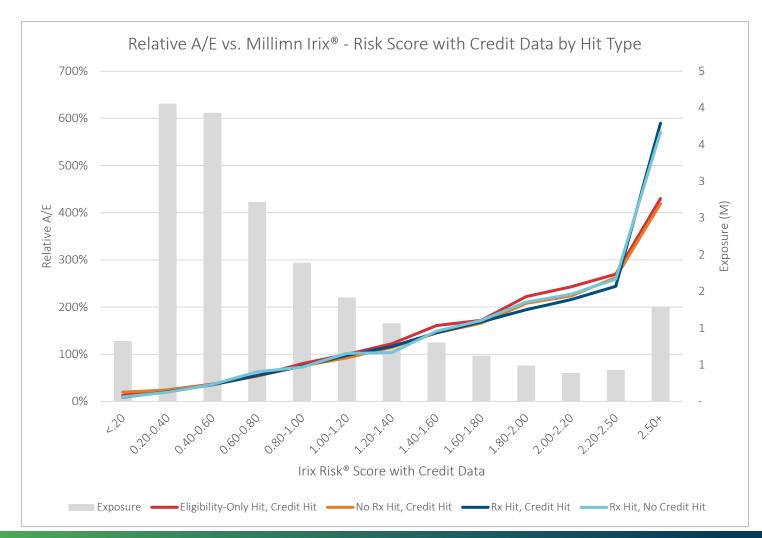
- Realtime access to data EHR turnaround time is typically a few days vs. weeks for an APS
- Structured data medical billing and diagnostic codes are labeled
- Possible future state would be to incorporate codes into STP systems

Combined Models: Medical + Credit

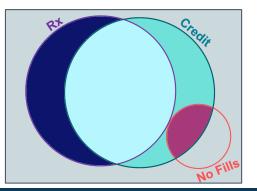


- Risk Classifier with Medical Data incorporates prescription data, labs, and medical claims from ExamOne in addition to behavioral attributes.
- Steeper segmentation: the best scores are reserved for hits with low-risk attributes for both medical and nonmedical dimensions
- Bad medical can be offset to an extent with good credit, and vice versa

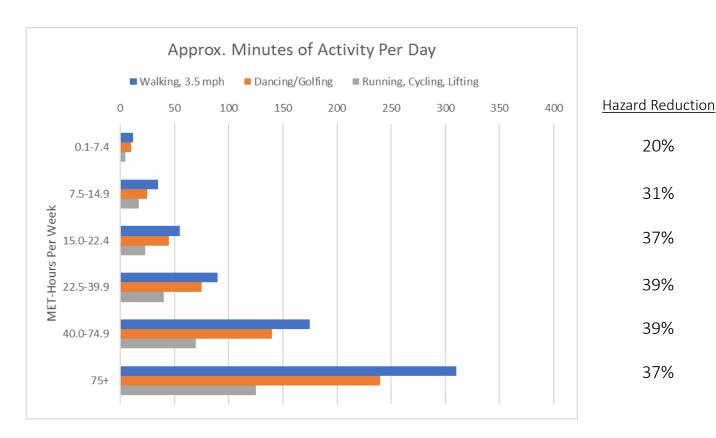
Combined Models: Rx + Credit



- Milliman's Irix risk score with credit data uses both prescription history and credit data
- Score can be produced with Rx-only hit and with creditonly hit, increasing hit rate vs. the Rx-only model.



Physical Activity



- Connections to mortality noted in 1953
- Activity level more important than sitting
 - Moderate levels of exercise reverse sitting (standing inadequate)
 - Stop or reduce exercise, and risk increases
- Being sedentary has excess mortality approaching that of tobacco use

20%

31%

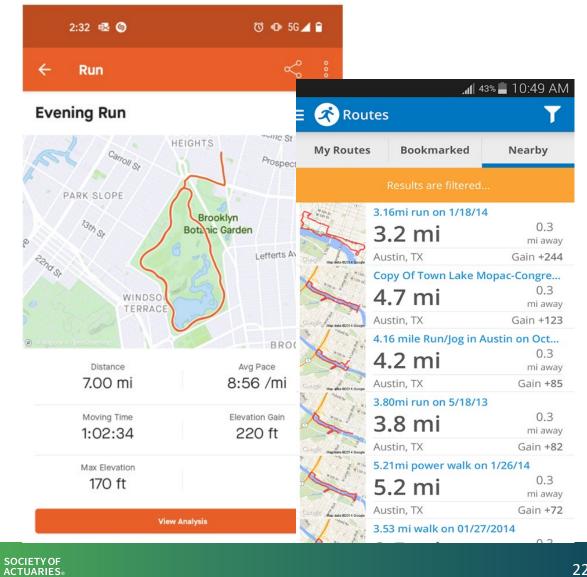
37%

39%

39%

37%

Physical Activity



- Wearable devices: phones, watches, bands
- GPS, steps, stairs, pulse, EKG...
- Opportunity for repeated underwriting

22

The Rest

Biometric Tools

- Facial and voice analytics detect excess "wear and tear"
- Plastic surgery can mislead
- Risk of bias accusations

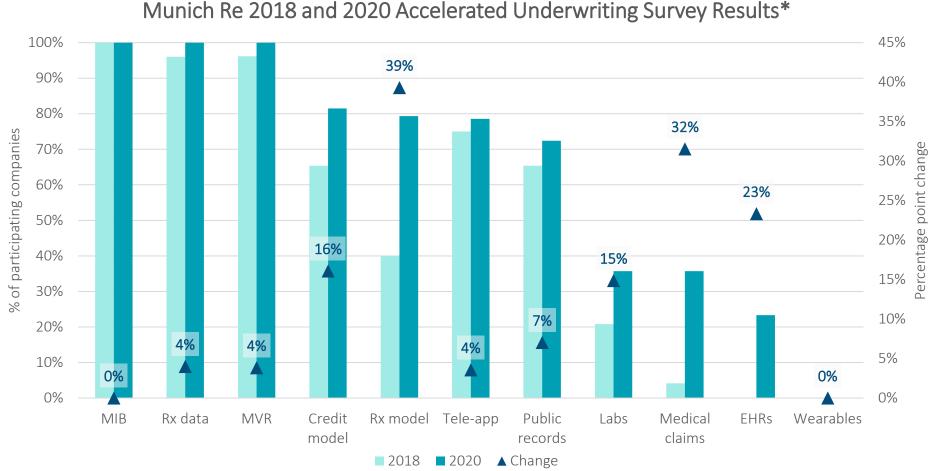
Genomics

- Gene sequencing: indicates future risk
- Epigenetics: signatures of smoking, alcohol use, and so on

Trustworthiness

- Misrepresentation: tobacco use, substance use, build, conditions
- Fraud detection: identity verification

Usage of underwriting data sources over time



* AUW Survey results represents responses from 26 carriers in 2018 survey and 30 carriers in 2020 survey

Impacts to Fluid-Less UW

ТооІ	Impact to Underwriting	
Non-Medical Scoring	Setting thresholds, provides new dimension of risk segmentation	
Physical Activity	Setting thresholds	
Prescription Scoring	Finer risk classification	
EHR, Med Claims, Labs	Better triage, medical Hx proxy	
Facial and Vocal Analytics	Improved detection of the unhealthy	
Genomics	Personal and family Hx proxy, estimate of future mortality	
Truthfulness	Evaluating trust	

Many of these tools have use cases outside of fluid-less underwriting, but to-date they've been mostly been evaluated in a fluid-less context

COVID Impacts on UW at Primerica

APS

- Dramatic increase in fluidless sales
- Small reduction in fluid testing

Fluidless and with-fluids products

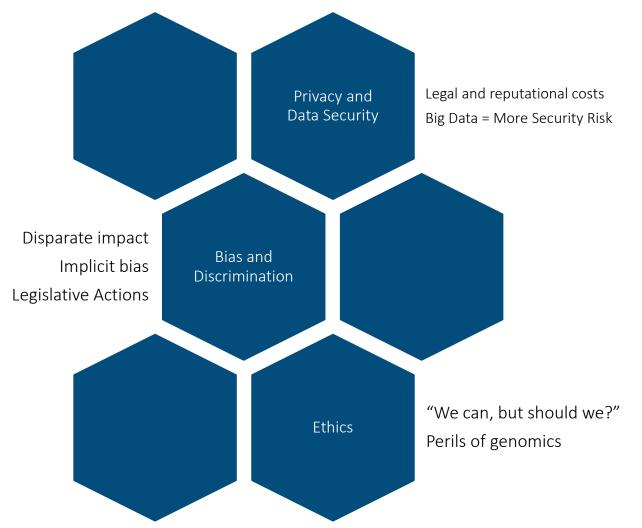
- Unavailable doctors
- Use LabPiQture to avoid some APS
- EMSI collapse sped up LabPiQture use

• Zoom selling => better disclosures?

• Better Rx hit rates

Better disclosures

Regulatory and Legal Concerns



The Future

Change is Ever Constant

"New" continues to become "traditional"

Assimilation of InsurTech and data science

Better buyer engagement

Thank you!

References

- Linda L. Golden, Patrick L. Brockett, Jing Ai & Bruce Kellison (2016) Empirical Evidence on the Use of Credit Scoring for Predicting Insurance Losses with Psycho-social and Biochemical Explanations, North American Actuarial Journal, 20:3, 233-251.
- Li, Anji (2020). *Milliman Irix® Risk Score with Credit Data stratifying mortality risk by combining prescription drug history and credit attributes*. https://www.munichre.com/us-life/en/perspectives/alternatives-for-stratifying-mortality-risk/milliman-irix-risk-score-credit-data-stratifying-mortality-prescription-drug-history.htm
- Druce, Julia (2020). *ExamOne LabPiQture™ An In-Depth Exploration of Clinical Lab Histories*. https://www.munichre.com/uslife/en/perspectives/alternatives-for-stratifying-mortality-risk/examone-labpiqture-in-depth-exploration-clinical-labhistories.html
- Niverthi, Murali (Q4 2021). White paper on LexisNexis® Risk Classifier with Medical Data. https://www.munichre.com/uslife/en/perspectives
- Seeman, Lisa & Goehrke, Dave (2021). Accelerated Underwriting and COVID-19 Are these temporary changes here to stay?. https://www.munichre.com/us-life/en/perspectives/accelerated-underwriting/accelerated-underwriting-covid-19.html
- Chefitz, Sandra (2017). TrueRisk[®] Life Score Stratifying Mortality Risk Using Credit Information. https://www.munichre.com/us-life/en/perspectives/alternatives-for-stratifying-mortality-risk/true-risk-life-score-using-credit-information.html

Additional Reading

- Morris, J. N., Heady, J. A., Raffle, P. A. B., Roberts, C. G., & Parks, J. W. (1953). Coronary heart-disease and physical activity of work. The Lancet, 262(6796), 1111-1120.
- Ekelund, U., Steene-Johannessen, J., Brown, W. J., Fagerland, M. W., Owen, N., Powell, K. E., ... & Lancet Sedentary Behaviour Working Group. (2016). Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. The Lancet, 388(10051), 1302-1310.
- Arem H., Moore S.C., Patel A., et al. Leisure Time Physical Activity and Mortality: A Detailed Pooled Analysis of the Dose-Response Relationship. JAMA Intern Med. 2015;175(6):959–967.
- Rothstein M. A., Cai Y., Marchant G. E. THE GHOST IN OUR GENES: LEGAL AND ETHICAL IMPLICATIONS OF EPIGENETICS. Health matrix (Cleveland, Ohio : 1991). 2009;19(1):1-62.

