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Actuaries and Data Scientists —
Powerful Partnerships and
Success Stories

Julia Druce, Manager, Integrated Analytics

John Myslinski ASA, Sr Data Scientist, Integrated Analytics
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What’s the difference?

| Actuarial Science

“Relating to calculations of  “The use of scientific methods
Definition risk for insurance companies  to obtain useful information

and pension funds.” from computer data.”
mathematics, statistics, mathematics, statistics,
Education finance, economics, or other computer science, data
quantitative subjects science (newer MS degrees)
Credentialing CAS and/or SOA None required

Definitions taken from the Cambridge English Dictionary
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Data Science Skillsets

Grad School

ThatGuyWho | %
Stole Your —=
Identity Online | o
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How do actuaries and data scientists partner in a life insurance
company?
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Early Organizational Structures with a Data Strategy

Underwriting Actuarial/ DEE]
& Medical Pricing Science

Chief Head of

Underwriter Pricing SCEI

> Data science strategy separate from the business units
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Underwriting, Actuaries & Data Science as Strategic Partners

Underwriting Data Actuarial &

— ‘ e ‘ —

Executive

Each practice area has autonomy to work directly with strategic partners to find
solutions, with shared executive oversight.
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Data Science Organization Structure

Standalone

Data scientists exist as a
standalone team.

« Creates knowledge sharing and sense
of community with data
science/engineering.

» Generally, more autonomy for
developing own tech stack.

» Can be difficult to integrate data
science throughout the organization.

© 2020 Munich American Reassurance Company. All rights reserved.

Integrated

Data science team exist
within business units.

Easy cross-pollination of skills and
business knowledge

Non-standard definition of data
science role (may be more difficult to
recruit)

Challenges in managing career paths
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Collaboration

Develop Pilot Product
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Speaking the Same Language

Data scientist
says: “Our model
target was lapse

(yes/no).”

Data scientist
says. “4 features
were important.”

© 2020 Munich American Reassurance Company. All rights reserved.

Actuary says:
“We predicted
lapse rates.”

Actuary says: "4
variables were
found to
differentiate risk.”
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Common Ground

“All models are wrong,
but some are useful.”

George E. P. Box
Statistician
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Traditional Actuarial Analysis vs. Predictive Models

Traditional Actuarial Analysis Predictive Models

+ Works well when relationships in data are « Automatically discovers rules and relationships

well understood and not overly complex. within data.

+ Inefficient for understanding large, new, or » With the appropriate amount and type of data,
complex datasets. should outperform traditional actuarial analysis.

Predictive Models Predictive Models

Trad. Actuarial
Analysis

Complexity

Data
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Success Stories from Life Insurance
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Problems and How We Solve Them

Predict mortality rates « Survival models - Cox proportional hazard,
& incorporate new predictors: exponential (parametric)
geodemographic, financial, * Other regression models — GLM, GAM, survival

behavioral trees

Summarize unstructured medical

data » Natural Language Processing

» Classification models — logistic regression,
support vector machines, boosted / bagged
decision trees, etc.

Predict applicant
misrepresentation (smoker status)

© 2020 Munich American Reassurance Company. All rights reserved. November 23, 2020




AE

AE

Predict Mortality Rates - Mortality Modeling using GAMs

i Factor

200%

100%

0%

20 25 30 35 40 45 50 55 60 65
Attained Age

300%

Smoothing
Spline

200%

100%

0%

20 25 30 35 40 45 50 55 60 65
Attained Age

© 2020 Munich American Reassurance Company. All rights reserved.

w

A/l

300%

200%

100%

0% l

20 25 30 35 40 45 50 55 60 65
Attained Age

1. Claims ~ 8 * AttainedAge Bucket

2. Claims ~ f = AttainedAge
3. Claims ~ f(Attained Age)

Generalized Additive Models (GAMs) extend GLMs by
incorporating smoothing splines into our model

specification.

GAM allows us much greater modeling flexibility

November 23, 2020
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Predict Mortality Rates - Physical Activity and Mortality

Relative A/E Mortality by Average Steps per Day
Model

o « CoxPH
Results
Daily step count stratifies

mortality risk

= People with sedentary/low
steps per day have a
higher mortality risk, while
those with moderate/high
steps per day have lower
mortality risk.

20
75%

50%

% of lives

1.0

25%

= People with sedentary
0.0 0% behavior have 3x relative

Sedentary Low Moderate High mortality of active
(0-5k) (5-7k) (7k - 9Kk) (9k+) individuals.

Steps per day

% Insurable Lives ==@= Insurable Lives ««++«=- Population-based
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Summarize Unstructured Medical Data - Natural Language Processing

Speech Tagging and Dependency Parsing

Bob was not diagnosed with diabetes 5 years ago.

PR8PER VERB VERB PREPOSITION NOUN NUMBER NOUN ADVERB
NOUN

November 23, 2020




®@

Munich RE =

Summarize Unstructured Medical Data - Timeline creation

Sample Timeline

Sally had a MRI in January 2015 where she was diagnosed with cancer. Two years later she
had another MRI where the test found she was negative for cancer.

Disease or

Disease or Syndrome

Syndrome

Diagnostic Diagnostic
Test Test
Breast

MRI MRI
cancer

Breast

cancer ] o 0 ¢ G

T T
i i
| | &
T i Lg
i |
i i

January 2015 January 2017

« Extract all dates within an Attending
Physician Statement (APS) and
associate them with medical terms

« Construct a timeline of a person’s

medical history
November 23, 2020
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Predict Applicant Misrepresentation - Smoker Status

Disclosed Smoker Rate by Predicted Decile srridias Risk Over Tirie

- |ssued
20.0% A 12.0% 1 —— Applicants
u
g w 11.0% 1
= 15.0% - &
g &
g ¥ 10.0% 1
E 10.0% 1 %
% % 9.0% 1
3 &
S ox 8.0% 1
7.0% 1
0.0% -
1 2 3 4 5 6 7 8 9 10
Risk Score Decile Application Date
A machine learning model was trained to predict if a Monitoring is a crucial part of successful model
life insurance applicant was likely to be a smoker deployment.

(classification model).
Here, we see a concerning divergence between the

The model segments the population and can be applicant and issued populations. ‘

used to flag applicants who are most likely to smoke

and require additional screening.
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Putting it all together in AUW

Insurancey Driving Public
History Record Records
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Lifestyle / Electronic

social

health record |

fi
W

Application Machine learning:
& * risk selection
Tele-Interview * misrep: smoker/BMI

Traditional Data/Process
Existing Data Sources
New Data Sources

© 2020 Munich American Reassurance Company. All rights reserved.

Rules-based
Automated UW

Holdout

Manual UW

I

Attending
Physician

Medical Income &
financial

info

Lab

Results Statement
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Conclusions

 Actuaries and data scientists complement each other, and both want to improve understanding and
management of risk.

» Currently, data scientists are generally more comfortable with manipulating large datasets,
implementing new model types, or integrating new data sources than the average actuary, but there
are always exceptions.

» The difference in roles and skills may shrink as more actuaries learn more programming and data
science through school/exams and as data scientists gets embedded in actuarial departments.

* Practical recommendation for actuaries — get programming experience
« Automate repetitive Excel tasks using VBA
» Recode an Excel spreadsheet in R/Python — compare cell output to code output
» Pre-process large datasets outside of Excel (you may already know SQL, perfect)
* Train your first GLM in R or Python

« Practical recommendation for data scientists — learn more about the business
 Attend industry presentations or internal lunch and learns
 Learn the language of the business
» Check your loss metrics — are you using a business relevant measure of model performance?

November 23, 2020
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