Accelerated Underwriting in Life Insurance

David Zhu, FSA, FCIA, PhD

November 2017
Integrated Analytics
Agenda

• Underwriting process
• Alternative data-based mortality scores
• Rx mortality scores
• Health records: APS, EHR
• Wearables
• Marketing and lifestyle data
• Smoker predictor case study
New tools need to integrate into the underwriting process

Available risk assessment tools / data:

- Insurance History
- Prescriptions
- Driving Record
- Credit
- Electronic health records
- Lifestyle / Social
- Wearables

Application & Tele-Interview

Predictive models:
1) screen
2) risk selection
3) smoker

Rules-based Automated UW

Manual UW

Risk Class

traditional data:

- Medical Lab Results
- Attending Physician Statement
- Income & financial info
Opportunities and risks of accelerated underwriting

Opportunities

- **Better customer experience**
 - Less intrusive – no fluid testing
 - Less hassle – no test scheduling
 - Faster

- **Better producer experience**
 - Less administration
 - Faster

- **Insurer benefits**
 - Redesigned apps and reflexive questions – better risk assessment
 - Higher sales, cross-sells
 - Lower underwriting costs
 - Access to new/underinsured markets

Risks

- **Higher loss costs**
 - Elimination of data may result in less accurate risk assessment
 - Elimination of fluids may miss some health conditions
 - Misrepresentation / anti-selection
Alternative data-based mortality scores

Our methodology:

Classical A/E analysis
- credible deaths in general population datasets
- limited credibility in insurer-specific datasets; however there is still enough consistency across carriers

Statistical analysis using predictive models
- maximizes the insight gained from retrospective studies, even with limited claim incidence
- isolates the effect of the scores and places confidence bands around relative mortality estimates
Our analysis suggests the scores:

- Are a new non-medical based dimension of mortality risk
- Are not intended to mimic the same UW risk class assigned using traditional medical underwriting
- Can improve the fit of mortality predictions on top of health-based underwriting criteria
- Provide mortality segmentation even within similar levels of affluence

Common applications include:

- Set threshold for eligibility into AUW program
- Set threshold for cases that are Declined
- Set threshold for Preferred criteria
- Risk class shifting
Alternative data-based mortality scores

Statistical techniques isolate the impact of the scores and provides confidence bands around estimates.
Rx (prescription drug)-based mortality score

- Milliman is one of the major providers
- Effectively stratifies mortality risk across attributes
- Particularly effective to identify high mortality risk when little other medical data is available

Common applications include:
- Set threshold for eligibility into AUW program
- Set threshold for cases that are Declined
- Set threshold for Preferred criteria
- Risk class shifting
- Combine with other mortality scores/UW criteria
Health records

1) The APS provided the most useful information for modeling.

2) Various regression and machine learning techniques including random forest, gradient boosting and support vector machines applied to predict probability of decline.

3) Besides probability, model provides keywords driving prediction along with page where found in text.
 - axillary: 12, 28, 30
 - prostate: 12, 56, 57
 - svc: 33
 - ancillary: 39, 40, 41, 43, 44
 - prostatic: 57, 61
 - influenza: 62, 63, 66
 - jaundice: 59
 - excised: 59, 61, 62
 - jaundiced: 68
Wearables

Info input by user
- Age
- Height
- Weight
- Waist Circumference
- Blood Pressure
- Family History
- Behavior (stress, happiness, smoking, alcohol)

Data input by device
- Step Count
- Minutes of moderate/vigorous activity
- Sleep
- Resting Heart Rate

Incorporate with application, UW data, new risk assessment tools for:
- Screening
- Risk class assignment
- Mortality model

Factors listed here are illustrative, not exhaustive, and vary by device; provided by Vivametrica
Marketing and lifestyle data

<table>
<thead>
<tr>
<th>Area</th>
<th>Predictor</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affluence</td>
<td>Face amount</td>
<td>▼</td>
</tr>
<tr>
<td></td>
<td>Home value</td>
<td>▼</td>
</tr>
<tr>
<td></td>
<td>Client issue age - older</td>
<td>▼</td>
</tr>
<tr>
<td></td>
<td>Education</td>
<td>▼</td>
</tr>
<tr>
<td></td>
<td>Investment assets</td>
<td>▼</td>
</tr>
<tr>
<td>Lifestyle</td>
<td>Catalog stationery buyer</td>
<td>▼</td>
</tr>
<tr>
<td></td>
<td>Healthy behavior change index</td>
<td>▼</td>
</tr>
<tr>
<td></td>
<td>Survey xxxxx music</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>Survey xxxxx vacations</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>Survey lotteries or sweepstakes</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>Survey xxxxx diet</td>
<td>▼</td>
</tr>
<tr>
<td></td>
<td>xxxxx pet ownership</td>
<td>▲</td>
</tr>
<tr>
<td>Location</td>
<td>Counties, grouped</td>
<td>▼</td>
</tr>
</tbody>
</table>

Smoker Rate by Decile

![Smoker Rate by Decile Chart](chart.png)
Smoker predictor case study

*Calculated as smoker liar rate * 200% (mortality multiplier for smokers)

<table>
<thead>
<tr>
<th>Fluid Test</th>
<th>Non-disclosure</th>
<th>Extra Mortality*</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>All</td>
<td>25%</td>
</tr>
<tr>
<td>II</td>
<td>None</td>
<td>25%</td>
</tr>
<tr>
<td>III</td>
<td>None</td>
<td>50%</td>
</tr>
<tr>
<td>IV</td>
<td>None</td>
<td>100%</td>
</tr>
</tbody>
</table>

- Currently all applicants are sent for fluid tests; extra mortality is 0%
- When fluids are eliminated without routing likely smokers for tests, mortality will increase
- At current self-disclosure, Model SL minimizes extra mortality cost (slightly)
- As non-disclosure increases, Model SA minimizes extra mortality cost
References

- Milliman Rx Risk Score Validation White Paper:

- TrueRisk® Life Score Validation White Paper:
Accelerated Underwriting in Life Insurance

Thank you!

David Zhu, FSA, FCIA, PhD
dzhu@munichre.ca